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Abstract 
A task that is unfamiliar and non-routine is sometimes characterized as having high structural 
complexity. Through increasing the task performer’s knowledge, informing processes can have a 
significant impact on structural complexity—as well as being impacted by it. The present paper 
examines the structural complexity construct, which can be further broken down into state com-
plexity, operator complexity, and goal complexity, with the objective of better understanding how 
the qualitative nature of structural complexity impacts the informing process. The analysis finds 
that the gap between conceptual expertise and practical expertise is particularly difficult to over-
come. Informing techniques favored by the conceptual expert, which emphasize top-down in-
forming using symbolic concepts, tend to be very much at odds with those favored by the practic-
ing expert, who likely favors a bottom-up approach based upon examples. Techniques for over-
coming these barriers are discussed, such as the use of vertical slicing and stories. 

Keywords: Structural complexity, task complexity, problem space, goal space, informing sys-
tems, learning, knowledge compilation, problem solving. 

Introduction 
The idealized informing system consists of a sender supplying information to a client through a 
channel in support of a task (Cohen, 1999). For such informing to be effective, the information 
being supplied must impact the mental model of the client. We refer to this model as a problem 
space (Gill & Hicks, 2006). Given this general framework, it makes sense to speculate that a qua-
litative understanding of the sender’s and client’s respective problem spaces could lead to insights 
regarding both the nature of the information that will be most effective in informing the client and 
its presentation. Such insights, in turn, could then be translated into rules that could be applied 
towards achieving more effective informing—an objective that is at the very core of the inform-
ing sciences. 

It has been proposed that task complexity may be an important contributor to the informing proc-
ess (Gill & Hicks, 2006). Of particular interest is structural complexity, which defines task com-
plexity in terms of the nature of the task specific knowledge in the problem space. As such, it 

changes as the performer learns more 
about the task. This learning aspect of 
structural complexity makes it a good 
candidate for giving us insights into the 
process of informing. The present paper 
adapts a structural complexity model, 
first proposed for use in matching task 
characteristics to expert system tools 
(Gill, 1991), to the general informing 
problem. It then analyzes how different 
levels of problem space structural com-
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plexity virtually demand different qualitative types of informing. 

We begin by presenting some definitions and then introducing a model of structural complexity, 
reviewing relevant literature as the model is developed.  We next consider what types of inform-
ing are most likely to succeed at each level of structural complexity. Finally, recommendations 
deriving from the hypothesized relationship between informing and structural complexity are pre-
sented. 

Definitions 
Prior to developing the structural complexity model to be used in this paper, it is useful to present 
a number of definitions.  We begin with how we will be using the term task: 

Definition: a task is a set of assigned a) goals to be achieved, b) instructions to be per-
formed, or c) a mix of the two. (Hackman, 1969) 

We next define the term problem space as follows: 

Definition: A problem space is a representation of the cognitive system that will be used 
to perform a task “described in terms of (1) a set of states of knowledge, (2) operators for 
changing one state into another, (3) constraints on applying operators, and (4) control 
knowledge for deciding what knowledge to apply next.” (Card, Moran, & Newell, 1983, 
p. 87) 

To organize our problem space, we will describe the set of knowledge states as the state space 
and the set of operators, constraints, and control knowledge as the operator space. Because tasks 
without goals—item (b) in our task definition—tend to be highly structured (almost as a matter of 
definition), we will also assume the existence of a goal space, containing one or more operators 
that allow the task performer to assess the fitness of the state space with respect to task goals and 
to determine relative progress towards these goals. 

Structural task complexity, or structural complexity, refers to the degree to which a task is per-
formed using task specific (as opposed to general purpose) knowledge, operators, and goals. Un-
der a structural complexity definition, low structure is more complex than high structure, i.e., un-
familiar tasks are more structurally complex than routine tasks. To avoid confusion with the many 
conflicting definitions of task complexity (see the complete review in Gill & Hicks, 2006), it 
should be noted that structural complexity differs from other widely used task complexity defini-
tions in a number of important respects, including: 

• Unlike objective task complexity (Wood, 1986)—which is defined to be a function of the 
number of task components, their degree of inter-relationships, and the degree to which 
these relationships are dynamic—structural complexity is not a property of the task itself 
but of the problem space used to perform the task. Thus, structural complexity nearly al-
ways declines as task performer expertise grows (e.g., through practice or through being 
informed as to how better to perform the task). 
 

• Unlike experienced or information processing complexity (Gill & Hicks, 2006), structural 
complexity is not necessarily a good predictor of task performance metrics such as bytes 
of information processed, arousal, or perceived difficulty. 
 

• Unlike other problem space complexity metrics, such as number of paths through the 
problem space (e.g., Campbell, 1988; McCabe, 1976), structural complexity is less con-
cerned with the potential size and precise construction of the problem space than with the 
qualitative nature of the cognitive structures likely to be used during task performance. 
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The final definition to be presented is that of a task case. Whereas the problem space describes 
the cognitive elements used to perform a task, a task case is an individual instance of a task to be 
performed. For example, the problem space of a physician would include a vast collection of 
medical knowledge; a task case might involve an individual patient coming in to visit the physi-
cian with a specific complaint to be diagnosed. 

It is important to recognize that structural complexity can vary across task cases. As suggested by 
Figure 1, for an expert’s problem space, most commonly performed task cases are likely to be 
highly structured. We’d also expect some semi-structured cases—where some task-specific 
knowledge is available but not enough to complete the task (e.g., the underlying cause of a pa-
tient’s symptoms were the result of a rare local disease contracted during previous travels to a 
remote region)—and even a small number of unstructured cases—where existing knowledge in 
the problem space does not apply to the task.  The typical problem space of a novice, in contrast, 
would likely include a vastly larger percentage of task cases that would require unstructured prob-
lem solving. 

 

 
Figure 1: Expert vs. Novice Problem Spaces 

Figure 1 highlights the point that structural complexity is really an interaction between the per-
former’s problem space and the particular task case being performed. When we consider the na-
ture of informing, we will generally be looking at the problem solving activities invoked for a 
particular task-case. Sometimes, however, it will also be useful to speak generally about complex-
ity across a collection or representative sample of task cases. When doing so, the term overall 
structural complexity (or overall structure, when referring to the opposite of structural complex-
ity) is used. It can be loosely defined as an average or weighted average (by frequency of occur-
rence) of structure levels across the set of task cases being considered. In the Figure 1 example, 
we could therefore say that the overall structural complexity of the novice problem space is sub-
stantially higher than that of the expert because its overall structure is lower. 
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Structural Complexity Model 
The qualitative framework used to describe structural complexity, modified from an earlier model 
developed for mapping tasks into expert system tools (Gill, 1991), characterizes problem space 
structure on three dimensions: state, operator, and goal. In each dimension, there are two scales: 
one reflecting the qualitative nature of the dimension and one reflecting the degree of uncertainty 
or ambiguity present. Each of the three dimensions is now described in detail using a number of 
example tasks—e.g., playing chess, solving a physics problem, writing an essay—to illustrate the 
different levels of structure. 

State Space Structure 
The state space component of the problem space consists of the knowledge schemata that can be 
applied to a particular task case or, more broadly, to a set of task cases. We need to be a bit vague 
regarding the precise nature of schemata for two reasons. First, it makes sense to avoid unneces-
sarily limiting the generalizability of the proposed model. Second, and more to the point, al-
though a large and sometimes impressive body of research has accumulated addressing the nature 
of individual schema—in fields that include cognitive psychology, cognitive science, computer 
science, neuroscience, and even philosophy—a great deal more research will be necessary before 
we will be ready to assert their structure in detail. Certainly included would be symbolic represen-
tations of task information, mental images (Kosslyn, 1980), cognitive representations of other 
sensory and emotional inputs (e.g., Gilbert, 2007), and semantic linkages between these elements, 
both of a hierarchal (e.g., inheritance) and relational (e.g., semantic networks; Woods, 1975) na-
ture.  

Approximate levels of structural complexity, as they relate to the state space, are presented in as-
cending order in Table 1. A particularly interesting aspect of this framework—later repeated for 
the state and goal problem spaces—is that our intuitive notion of an expert (e.g., a master of the-
ory, such as a professor) is almost precisely the opposite of the way typical experts most com-
monly reason. The most widely cited evidence for this assertion comes from the study of chess, 
which has been referred to as the drosophila (fruit fly) of the cognitive sciences owing to its fre-
quent use in the study of problem solving (Charness, 1991, p. 39). An obvious candidate for the 
most important skill required of a chess master would be the ability to look more moves ahead 
than a novice. Studies suggest, however, that once a player reaches an intermediate level of play a 
relatively stable level of move look-ahead is reached. What does change, on the other hand, is the 
number of board positions (state spaces representations) than can be recalled by the player. 
Among the evidence supporting this view is the astonishing ability of chess masters to recall 
board positions after a short inspection (an ability that declines rapidly as pieces are placed in 
random positions) and the ability to recall the sequence of moves in past games. As expertise con-
tinues to grow, grand masters develop enhanced ability to overlook moves that are unsuitable 
without conscious thought (Charness, 1991). A similar novice-expert distinction has been ob-
served in many domains (e.g., Larkin, 1981). 

The human cognitive system is actually built so as to encourage such movement towards reason-
ing through unconscious processes. The process of chunking (Miller, 1967), for example, allows 
scarce working memory—where most conscious processing typically takes place—to be con-
served by taking schemata and composing them into ever-larger chunks. Automization (Shiffrin 
& Dumais, 1981) has a similar impact on sequences of operators applied during task perform-
ance. Thus, higher levels of state space knowledge (e.g., abstract models) are only required for 
those task cases where existing task related schemata are inadequate. It is the low structure cas-
es—not the high structure cases—that require theoretical reasoning. If an expert’s job consists 
entirely of routine task cases, such theory may never be required. Collectively, the processes by 
which expert knowledge is transformed—sometimes referred to as knowledge compilation—
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contribute to a wide range of observed phenomena, such as the learning curve (Neves & Ander-
son, 1981). 

Table 1: State Space Complexity Levels, with lower levels being associated with  
more practiced tasks and greater expertise in task performance. 

State 
Complexity 
Level 

Name Description 

1 Full Schema A fully structured state space, with all the schema and relationships required 
to perform a particular task. A physician, for example, would enter into a 
diagnostic task with a large set of schema that might be knowledge for rep-
resenting different conditions, tests that could be applied, mental image rep-
resentations for symptoms observed in the past, knowledge of common and 
uncommon patterns of symptoms and measures, and so forth. 

2 Schema 
Templates 

A collection of knowledge structures defining information needed for task 
performance and interrelationships within such information. As an example, 
a blank set of tax forms and instructions identifies the information that is 
required for preparing a tax return. The layout of a chessboard and knowl-
edge regarding how pieces move prepares the way for playing chess. 

3 Abstract 
Models 

Knowledge that helps the task performer identify what knowledge is and is 
not relevant to the task at hand, the general nature of the components of the 
task, and the general nature of relationships expected to be present in per-
forming the task. A physician, for example, might have mental models of 
the functioning of different body systems, the nature and impact of various 
bacteria and viruses, the conceptual basis for various treatment options, and 
so forth. 

4 Unstructured Little or no task specific knowledge is present. In addition, it is likely to be 
difficult or impossible to determine what information is and is not relevant 
to the task. While such a situation will certainly make task performance 
more complex, it will not necessarily preclude task performance since gen-
eral purpose techniques (most notably, analogy; Rumelhart & Norman, 
1981) are available for mapping knowledge and relationships from one do-
main into another is cases where task-specific structure is unavailable. 

 

Along with substantial body of literature regarding the knowledge compilation process, a number 
of compelling examples of the phenomenon have accumulated in the literature and popular press. 
One that illustrates the compiled nature of specialized expertise involved the identification of a 
forged artwork at the Getty Museum, where a number of experts expressed the sentiment that a 
particular statue didn’t “feel” right despite its relatively solid provenance and the fact that they 
could not articulate what bothered them (Gladwell, 2005). In an example of everyday expertise, 
an experiment involving choice in the context of shopping investigators found that buyers con-
fronted with a complex furniture choice were happier a week later if they decided based upon 
their first impression as opposed to being asked to think about it (Dijksterhuis, Bos, Nordgren, & 
van Baaren, 2006). In a similar vein, one of the most common multiple choice test taking strate-
gies is to go with your first guess unless strong disconfirming evidence is later encountered (Es-
trada, 2008). 

For each of the three spaces, a second set of levels reflecting uncertainty or ambiguity is also spe-
cified as a part of overall structure. For the state space, these specifically relate to uncertainty and 
are presented in Table 2. These differ from the state space complexity levels in three important 
ways. First, they are properties of individual values within the state space, rather than of the entire 
state space being applied to a particular task case. Thus, a given task case may involve schemata 
at a variety of uncertainty levels.  Second, uncertainty levels may change over the course of task 
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performance as a result of task performer action. Third, a given uncertainly level may be an in-
herent property of the task—the oven being used in a cooking task has an inaccurate thermome-
ter—rather than being a function of the particular problem space. When such is the case, expertise 
is unlikely to change that particular uncertainty level. Otherwise, enhancements that come with 
expertise (e.g., more acute observational power) will tend to drive values towards lower uncer-
tainty as expertise increases. 

Table 2: State Space Uncertainty Levels, often a function of the task itself 

State 
Uncertainty 
Level 

Name Description 

1 Knowable Values in the state space are directly observed, established by the task, fully 
determined by other values, or set by the task performer. 

2 Measured Values may not be observed directly, but may be measured with some 
quantifiable range of uncertainty. 

3 Uncertain Values that have yet to be specified, measured, or observed, values that may 
change between task performer observations, and values that are tacit in 
nature (as is often the case for moderating variables in the social sciences) 
all fall into this category. Tacit values, in particular, generally need to be 
deduced or confirmed indirectly from other values in the state space. 

4 Unknown Values for which little or no information is available, either with respect to 
the actual value or the range of possible values. 

 

Operator Space Structure 
The operator space component of the problem space consists of operators (i.e., actions) that the 
task performer can apply to change the state space, constraints on when those operators can be 
applied, and control knowledge that determines what operators should be selected at each point 
during task performance. Such changes may involve direct changes to the external task environ-
ment (e.g., moving a chess piece) or may take place entirely within the task performer’s internal 
representation (e.g., mentally generating the set of the opponent’s possible responses to a possible 
move being considered by the task performer). Without any particular loss of generality, we can 
combine the constraint and operator elements by assuming that a condition-action format may be 
specified (IF constraint-condition THEN action) that prevents illegal actions from taking place. 
We refer to operators in this form as rules. 

The levels of operator space structure, presented in Table 3, refer specifically to how operators 
are controlled during task performance. They differ from constraints in that the former determine 
whether or not an operator can be legally applied whereas the latter determine what to do when 
two or more operators that meet their individual constraints are available, referred to as the con-
flict resolution problem. This problem is nearly ubiquitous except in highly structured tasks. It is 
also present when the opportunity to apply operators in parallel is available (e.g., a physician may 
choose to order multiple tests from the same blood sample). As was the case for state complexity, 
the operator space also offers a path towards lower complexity. If, after repeated task perform-
ance, the same sequence of operators or rules is repeatedly invoked as a result of conflict resolu-
tion, they may be combined into a single program. Such a program synthesizes the entire collec-
tion into a structure resembling a logical flow chart, thereby eliminating the need for conflict 
resolution while it is active. The program may then, in some cases, interact with the state space 
such that all the values that are needed to determine the specific path to be taken within the pro-
gram are established prior to starting the program. Doing so allows the program to be recon-
structed as a set of separate sequences. By removing control knowledge (i.e. tests) from the op-
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erator sequence, we meet the perquisites for automization (Shiffrin & Dumais, 1981) of the se-
quence into a single compiled operator with continuing practice. 

Table 3: Operator Space Complexity Levels, with lower levels being associated with more 
practiced tasks and greater expertise in task performance. 

Operator 
Complexity 
Level 

Name Description 

1 Sequence One or more operators that are applied without any intervening control or 
conditions 

2 Program A collection of operators that may contain different branches—regions of 
operators that can be invoked only if specified criteria are met, also referred 
to as control structures. A program may be interrupted as a result of the state 
space values but is normally followed to completion. 

3 Task-
specific con-
flict resolu-
tion 

Choice of operators is informed with task-specific knowledge that may in-
clude experience with past choices in similar situations, considerations of 
the cost of operator invocation, and probabilistic knowledge of likely out-
comes. 

4 Weak meth-
ods 

General methods of operator choice that are applicable to many tasks, such 
as search strategies (Newell, 1991) and a variety of heuristics, such as elimi-
nation by aspects (Payne, Bettman, & Johnson, 1993). 

 

Some types of task may not be amenable to progress towards automization. The huge number of 
possible board configurations in chess, for example, dramatically limits the degree to which op-
erator space structure can be established (indeed, intermediate players appear to exhibit patterns 
of search that are qualitatively similar to those of experts, only not as effective; Charness, 1991, 
p. 44). That will not prevent some aspects of the task being automated, however. For example, 
chess players often employ very similar openings from game-to-game, implying that the opening 
portion of the game can become increasingly programmed as familiarity with the range of open-
ings grows. Mathematically oriented tasks, on the other hand, may become so automated that in-
tervening steps are totally omitted or forgotten. Tools and specialized knowledge may provide 
similar shortcuts. For example, math programs, formulas, and integral tables may allow a task 
performer to move directly from a math problem to its solution without any attention being paid 
to the underlying derivation. 

The uncertainty-related component to complexity in the operator space results from the uncer-
tainty associated with an operator’s impact on the state space. The levels are summarized in Table 
4. Completely analogous to state space uncertainty, some of these uncertainties may be inherent 
to the task (e.g., your opponent’s moves in chess will always be uncertain at the time you move 
your piece) whereas others may become more structured with experience. For example, when 
experience shows that open ended responses to the final item of a questionnaire all fall into a se-
ries of categories, the “interpret the response” operator for that question could change from an 
uncertain state set to a determined state set. 



Structural Complexity 

260 

Table 4: Operator Uncertainty Levels, often a function of the task itself 

Operator 
Uncertainty 
Level 

Name Description 

1 Deterministic Application of an operator leads to a completely predictable impact on the 
state space. For example, a manager may choose to set the price for a giv-
en product as part of the product management task. 

2 Determined 
State Set 

Application of an operator leads to a state space that is an element of a 
known set of state spaces. For example, when you move a piece in chess, 
the resulting state space will be a member of the set of possible board po-
sitions that can be reached after your opponent’s next move. Similarly, 
when a nurse takes a patient’s temperature, the resulting set of possible 
state spaces consists of states that are identical with the exception of hav-
ing differing temperature values. 

3 Uncertain 
State Set 

The operator affects a known set of state space values, but there is no way 
to bound the set of possible states that result. For example, if an individual 
is assigned the task of writing an essay, there is no obvious way to estab-
lish the set of all possible essays that could be written. 

4 Indeterminate The impact of the operator on the state space cannot be predicted prior to 
being invoked. 

 

Goal Space Structure 
The goal space component of the problem space consists of an evaluator—which we will call the 
goal fitness operator or, for short, the goal evaluator—that allows the relative fitness of the state 
space to be assessed as the task is being performed. In essence, it evaluates the degree to which 
progress is being made towards the task goal and helps identify what actions will lead to further 
progress. In the latter context, the goal evaluator can be accessed by control systems within the 
operator space as part of the process of determining what operator to apply. It can be vital, for 
example, in pruning large search trees.  

Consider the following examples. In chess, if the goal evaluator strongly rates a particular move 
as unpromising, there is no need to mentally consider the series of opponent responses and coun-
ter-moves that might result from making the move; the task performer simply moves on to con-
sidering the next move. In medical diagnosis, if the goal evaluator perceives that symptoms de-
termined so far are a good fit with a particular disease, further diagnostic efforts can then be di-
rected towards verifying that conclusion. When confronted with a large number of alternatives 
(e.g., buying a used car), the goal evaluator can also be used to eliminate alternatives from con-
sideration (e.g., Payne et al., 1993). The availability and quality of such a goal evaluator can lead 
to dramatic differences in task performance. For example, it has been demonstrated that chess 
grandmasters search less intensively than master-level players (Charness, 1991, p. 44), implying 
they are better able to abandon moves without considering them further. This would be a natural 
consequence of a superior goal fitness operator.  

While it would be possible to place such a goal fitness operator in the operator space (as was done 
by Card et al., 1983), there are a number of benefits to treating goals separately. Specifically, as 
mentioned earlier, goals will play a more prominent role than instructions to the performer for 
nearly all tasks that are not highly structured. A separate goal space facilitates mapping such a 
task to the problem space. Second, a number of highly influential models suggest that the goal is 
the principal pathway for establishing motivation (Bandura, 1991, p. 264; Locke, 1978). By ex-
plicitly incorporating goals into our model, we therefore incorporate a motivational element to the 
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problem space. As will be discussed later, this motivational aspect of task performance provides 
insights into the receptivity of the task performer to different types of informing.  

The goal evaluator closely corresponds to the utility function, widely used in economics and deci-
sion theory. Expected utility is the conceptual source of decision-maker preference; if you choose 
one alternative over another, the presumption is that the chosen alternative had higher expected 
utility than the other. Extending this concept to all actions, not just economic choices, you have 
the goal evaluator. 

A learning model of utility has been proposed that maps well to the goal space levels (Gill, 
2008a). Under the learning model, as individual familiarity with a choice grows, utility migrates 
along the following path: 

• Generic utility: General purpose goal feature detectors—analogous to the specialized de-
tectors often proposed for other cognitive systems, such as word recognition (McClelland 
& Rumelhart, 1981)—identify characteristics in possible alternatives that are widely ap-
plicable to different settings, such as gains, losses, uncertainty, and consumption oppor-
tunities. These send signals to accumulators where they are summed and a final utility 
level is established. 
 

• Task-specific goal utility: Decision-specific goals and goal feature detectors are acquired 
that send signals based upon the degree to which an intended choice (or action) appears 
to satisfy active goals related to the specific task case. 
 

• State-based utility: As decisions become automatic, specific reference to individual goals 
becomes no longer necessary to make choices.  Instead, direct linkages from state values 
to utility are established. Here, it is specifically hypothesized that making progress to-
wards goals becomes the source of utility (Gill, 2008a). 

For our present purposes, only one refinement to the model is required to make these levels con-
sistent with the other problem space components (state and operator spaces). From a complexity 
perspective, it makes sense to divide task-specific goal utility into two levels. The more structur-
ally complex level exists where multiple, interrelated goals are present. The less complex level 
exists where a single goal or fully decomposable individual goals (i.e., goals that don’t interact 
with each other) are present.  

The justification for separating the two regions is that the associated goal spaces will tend to be, 
qualitatively, very different in structure. This draws upon the notion from evolutionary biology of 
a fitness landscape (Kauffman, 1993), which maps entity characteristics (such as genes or animal 
traits) to a value that signifies the survivability or desirability of the combination (Gill, 2008b). 
Where a single goal exists, or where individual goals can be pursued independently, the utility 
function will have a single peak. From a task performance perspective, this means that by choos-
ing operators that increase expected utility, you will nearly always find yourself moving towards 
the desired goal. Where multiple goals that interact are present, on the other hand, you are far 
more likely to get a rugged fitness landscape (Kauffman, 1993). This means that choosing opera-
tors by optimizing utility locally only guarantees a local peak. Very often such local peaks will 
not exhibit very good fitness. The hypothesized goal space levels are presented in Table 5. 

To make the ruggedness example more concrete, consider the game of chess. In the very early 
stages of learning the game, novices are taught to associate point values with pieces (e.g., pawns, 
1; bishops and knights, 3; rooks, 5, queen, 10). This immediately leads to the creation of a task-
specific goal—maximize points relative to your opponent. While this goal is generally sound, it is 
only one of many heuristic goals that are used to guide chess play (e.g., maintain control of the 
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center of the board is another). Often, during real games these goals will conflict. If you only 
worry about the maximizing the point count goal, you are unlikely to succeed against a strong 
player. Indeed, once your opponent recognizes that you are focusing exclusively upon that goal, 
he or she will continually tempt you with sacrifices that—if taken—will ensure your defeat. 

Table 5: Goal Space Complexity Levels, with lower levels being associated with  
more practiced tasks and greater expertise in task performance. 

Goal 
Complexity 
Level 

Name Description 

1 Progress Identifies the degree to which the current state space represents a com-
pleted task. Goal fitness is derived directly from the state space. 

2 Decomposable Goal fitness is a function of one or more separable goal frames within the 
state space which may be additively combined. Goal fitness directs the 
task performer towards a single peak. 

3 Rugged Goal fitness is determined by activation signals sent by individual compet-
ing goal frame agents. It can be modeled by a non-decomposable utility 
function that is heavily influenced by interrelationships between state val-
ues, with multiple local fitness peaks being present. 

4 Generic Goal fitness is a function of generic feature detectors that look for attrib-
utes of alternatives, such as gains, losses, and uncertainty that are widely 
applicable in many circumstances. As such, suitability for a specific task 
may be weak.  

 

With increasing expertise, the task performer will acquire the ability to weigh alternative goals as 
appropriate for different situations. This requires two types of knowledge: knowing where the 
local peaks are and knowing how to weigh them appropriately under different circumstances.  At 
this point, the goal space comes to more closely resemble a single function. 

The process through which goal space structure emerges through practice closely mirrors that 
proposed for the state and operator spaces. Initially, unstructured task performance would utilize 
generic goal detectors along with any task-specific goals available to the task performer as a re-
sult of specific goal information incorporated into the task itself and prior informing with respect 
to specific task performance or theory. Over time, particular patterns of agent activation leading 
to successful task performance would be chunked into more sophisticated task-specific goals, ap-
plying set weights to the contributing goals and sending suppressing signals to those goals found 
not to be relevant. The composite goal frames would require vastly less attention than the generic-
goal based approach and would gradually emerge and tune themselves to all routine task cases. 
Finally, task performers would begin to map these goal evaluators directly to state-space values—
a process likely to be facilitated by parallel development of a large library of chunked schema 
patterns in the state space, as already discussed—eliminating the need to consider goals con-
sciously except for the purpose of monitoring task progress. 

In the goal space, the analog to state and operator uncertainty levels is goal dynamics levels, pre-
sented in Table 6. The idea here is that during the course of performing a task, priorities (Level 2) 
or goals (Level 3) may change in ways that significantly impact task performance. As was the 
case for the other uncertainty levels, this may be a consequence of the nature of the task itself and 
not just the problem space. 

Goal dynamics are likely to present the greatest challenge in tasks that take place over an ex-
tended period of time. For example, during a multi-semester-long redesign of an introductory 
programming course (Gill & Holton, 2006), the initial goal criteria included designing a course 
that could: 1) accommodate diverse student backgrounds, 2) allow a single terminally-qualified 
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instructor to preside over many students (an accreditation-related criterion), 3) accommodate the 
unpredictable growth in the department’s MIS major (which had been explosive in prior years), 
and, to a lesser extent, 4) act as a gatekeeper for subsequent courses in the MIS major. Over the 
duration of the two year redesign, however, severe contraction in the program’s enrollments 
(which went from 1100 MIS majors to around 200) caused criteria (2)-(4) to be abandoned and 
replaced with (5) encouraging retention. 

Table 6: Goal Dynamics Levels, representing the degree to which goals change over time. 

Goal 
Dynamics 
Level 

Name Description 

1 Static Goals are unlikely to change during task performance. 
2 Fixed Goal 

Set 
Goals may change during task performance, but the nature of all possible 
goals is known at the outset of the task, meaning changes can be modeled 
in terms of priorities. 

3 Uncertain 
Goal Set 

Goals may change in some meaningful way during task performance but 
the precise nature of possible goals cannot be ascertained. 

4 Indeterminate It is unknown whether or not goals can change and the nature of such 
change cannot be predicted. 

 

The principal approaches to reducing goal dynamics are to reduce the time taken to perform the 
task—thereby reducing the window of opportunity during which goals can be altered—and to 
focus on attaining goal peaks that are anchored to less dynamic criteria. For example, prioritizing 
task goals that maximize contribution to an organization’s strategy (which, hopefully, changes 
less rapidly than its tactics) may reduce the volatility experienced during task performance. 

Integrated Model 
The concepts presented can be synthesized into an overall problem space model, such as that pre-
sented in Figure 2. There are, essentially, three dimensions that can be used to categorize task-
related problem space knowledge:  

1. The structural level (the Y-axis of the diagram), with lower levels generally correspond-
ing to higher experience-based expertise (theory based expertise is considered in the next 
section.) Level 4 is omitted since it is not task specific. 
 

2. The specific subspace (the Z-axis of the diagram) 
 

3. The applicability of the knowledge, with some knowledge being broadly applicable 
across task cases (core knowledge), while other knowledge is more task case specific. 
(For the sake of illustrative clarity, the diagram somewhat oversimplifies this characteris-
tic, since some knowledge may be too specific to be considered core yet may map to 
more than one task case.) 

The relative importance of task case knowledge versus core task knowledge is likely to be a func-
tion of the ruggedness of the task fitness landscape. High levels of ruggedness, generally resulting 
from large numbers of interacting task elements, will produce many alternative solutions to a task 
that can vary widely from case to case. In such landscapes we would expect to see knowledge of 
specific task cases dominate core knowledge (Gill, 2008b). Where the task is highly decomposa-
ble, on the other hand, knowledge of task components will apply across the task landscape, mak-
ing core knowledge much more generalizable across the problem space. 
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Figure 2: Problem Space Structural Complexity Model 

Issues in Informing and Structural Complexity 
The remainder of the paper addresses how structural complexity impacts informing processes. 
Because such informing involves the interaction of sender, task, and client in a context that in-
volves adaptation (i.e., changes to the client problem space), the goal space will not be easily de-
scribed or predicted without detailed study of individual task cases and performers. The nature of 
the problem does suggest, however, a certain number general informing issues. Three of these 
involve: 1) awareness of prior client knowledge, 2) understanding the particular bottlenecks to 
performance of the task being conveyed, and 3) understanding the nature of the client’s motiva-
tion for being informed. These are discussed briefly in the current section. In the subsequent two 
sections, we expand upon the discussion by considering some heuristics that appear to apply gen-
erally to complex informing situations, then address the particularly challenging problem of in-
forming across very dissimilar problem spaces. 

Prior Client Knowledge 
If we are a sender seeking to inform a particular client, understanding that client’s initial problem 
space (i.e., the problem space we are seeking to change) is bound to be important. Obviously, the 
informing process can be streamlined if the sender knows what knowledge the client already has. 
In a curricular setting, for example, this may be accomplished by having prerequisites to a course. 
Such knowledge may not be limited to task-specific elements, however. For example, differences 
in vocabulary or conflicting prior knowledge (Bain, 2004) may inhibit informing. We return to 
this topic later, when we consider the general challenges of informing across dissimilar problem 
spaces. 
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Location of Task Performance Bottlenecks 
For many tasks, bottlenecks to task performance tend to occur in specific regions of the problem 
space. Consider some of the examples presented in the previous sections: 

• Physics problems: Understanding of elementary physics will nearly always involve grow-
ing the state space through the acquisition of theories (Level 3) and specific schemata 
structures (Level 2) that identify when the specific constraint of an operator (e.g., a for-
mula) has been met. Operator control and goal fitness tend to be far less important. 
 

• Medical diagnosis: For most medical diagnosis problems, the problem space will gener-
ally be dominated by state schemata (i.e., the ability to recognize patient symptoms) and 
control knowledge (i.e., the ability to determine what questions to ask and tests to run in 
an environment where both time and costs are likely to be highly constrained). 
 

• Chess: Chess effectiveness is particularly dependent upon the sophistication of the goal 
space, which allows us to eliminate moves from consideration in order to avoid the com-
binatorial explosion of possible moves as we look ahead. Such fitness is likely to be 
greatly enhanced by the accumulation of state space schemata holding patterns of moves 
(e.g., past games, games described in magazines). 

As a general rule, we may speculate that the most effective informing is going to occur with re-
spect to the task performer’s perceived bottlenecks. 

Client Motivation 
The client’s motivation towards being informed is also likely to be a critical determinant of what 
types of informing will be effective. Using our model, three general types of task performance 
improvements might be the goal of informing, either individually or in combination: 

1. Reducing structural complexity: This involves transforming a particular task case to a 
more structured form or reducing the overall structural complexity of the task (i.e., in-
creasing the average level of structure across all task cases). 
 

2. Increasing task outcome quality: This involves coming up with solutions having higher 
goal fitness. For example, in a complex goal task, being informed about a peak with 
higher fitness than the client’s existing peak could lead to an improvement in outcome if 
the informed client then targets the new peak. 
 

3. Increasing performance efficiency: This involves improvements to performance such as 
reducing costs (both economic and cognitive) and increasing speed of task performance. 

Client motivation extends well beyond the desire to achieve pure task performance improve-
ments. In fact, the psychology and education literatures find that client motivation for informing 
can vary considerably across two dimensions (Elliott & Harackiewicz, 1996): mastery vs. per-
formance and approach vs. avoidance. For mastery goals, motivation is largely intrinsic whereas 
performance goals are often motivated by external factors (e.g., more pay, better grade) as well as 
by intrinsic factors. We might speculate that mastery goals would make informing across task 
cases particularly attractive, whereas performance goals would tend to be focused towards 
achieving better performance on those specific cases being performed or anticipated. For ap-
proach goals, the motivation is directed towards enhancing performance whereas avoidance goals 
are motivated by preventing or ameliorating performance failures. We might therefore anticipate 
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that the performance-avoidance combination (far more common than the mastery-avoidance 
combination) would be particularly motivated by informing related to specific task cases. 

Heuristic “Laws” of Informing 
The existence of intrinsic motivation for being informed has significant implications with respect 
to informing processes and structural complexity. Some of these implications are captured in 
three empirically-derived principles related to informing that are presented in this section. The 
first, the Law of Abandoned Expertise, relates generally to human informing activities. The re-
maining two, the Law of Limited Visibility and the Law of Low Hanging Fruit, specifically relate 
to informing situations involving tasks exhibiting a rugged fitness landscape (Level 3 Goal 
Space). 

The particular significance of rugged fitness landscapes is examined in considerable detail in an-
other paper (Gill, 2008b). One of the key conclusions of that paper is that rugged landscapes 
might be quite common in informing systems. The reasoning behind this conclusion was as fol-
lows: 

• Many elements appear to have the potential to impact informing effectiveness (both 
sender and client motivation, client problem space contents, sender awareness of client 
problem space contents, task characteristics, delivery system characteristics, and so 
forth). Thus, the fitness function is likely to have many arguments. 

• Most of the arguments to the fitness function would appear to require fit with other ar-
guments. For example, if a client’s learning style leans towards visual presentation, we 
would expect more effective informing to occur if the system employs graphic display. 
Thus, we predict many interrelationships between fitness variables. 

• Particularly where technology and globalization trends impact the system, the nature of 
the fitness functions will be continually changing. 

These three attributes happen to represent the principal prerequisites for a rugged fitness land-
scape. Thus, such landscapes should be the rule, rather than the exception, when the fitness of an 
informing system is considered in conceptual terms. 

Law of Abandoned Expertise  
Hypothesis: Clients will resist any task-related informing activities that require relin-
quishing existing expertise in their problem space. 

Throughout the development of the problem space complexity model, expertise has been pre-
sented as an accumulative process of moving from higher structural complexity towards lower 
structural complexity. For such a process to continue, it would necessarily have an implicit moti-
vational element. The likely corollary, then, would be that moving towards from practiced exper-
tise towards higher structural complexity would be demotivating in character. 

The reason for stating this law explicitly is that the oft cited “resistance to change” is overly gen-
eral and does not reflect the real world very well. In knowledge diffusion contexts, some changes 
are observed to be welcomed. Rogers (2003), for example, described the remarkable pace of dif-
fusion for the drug tetracycline in the 1950s. Key to this rate of adoption was the fact that the 
drug was nearly identical to existing antibiotics in its application, differing only in its signifi-
cantly reduced side effects.  What the hypothesis states, then, is that informing activities requiring 
individuals to “give up” their previously acquired expertise are those most likely to experience 
resistance. 
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Perhaps the most compelling evidence for the hypothesis comes from Kuhn’s (1970) seminal re-
search into the nature of scientific revolution, where it is noted: 

…the act of judgment that leads scientists to reject a previously accepted theory is always 
based upon more than a comparison of that theory with the world. The decision to reject 
one paradigm is always simultaneously the decision to accept another, and the judgment 
leading to that decision involves the comparison of both paradigms with nature and with 
each other. (p. 77)  

Wholesale acceptance of informing that requires the acceptance of another paradigm—a form of 
schema restructuring (Rumelhart & Norman, 1981)—is also likely to entail abandoning a sub-
stantial fraction of compiled knowledge (e.g., chunks, automatized processes) , suggesting that 
the task performance benefits of being informed would need to lead to dramatic improvements 
when compared with the initial problem space. 

Evidence for the Law of Abandoned Expertise also appears at the novice level. For example, fac-
ulty members teaching an introductory physics course were disturbed by exam results that sug-
gested their students were holding fast to their existing (Aristotelian) model of motion, despite 
their having been taught the more accurate Newtonian perspective (Halhoun & Hestenes, 1985, as 
cited in Bain, 2004). To counter this, the faculty conducted individual interviews with students, 
devised experiments to demonstrate the inadequacies of the student-held models, and conducted 
experiments that refuted Aristotelian notions in front of the students. They then asked the student 
to explain the results. 

What they heard astonished them: many of the students still refused to give up their mis-
taken ideas about motion. Instead they argued that the experiment that they had just wit-
nessed did not exactly apply to the law of motion in question; it was a special case, or it 
didn’t quite fit the mistaken theory of law that they held as true… The students per-
formed all kinds of mental gymnastics to avoid confronting and revising the fundamental 
principles that guides their understanding of the physical universe. Perhaps most disturb-
ing, some of these students had received high grades in the class. (Bain, 2004, p. 23) 

The implication here is that even novice task performers may perceive themselves as having some 
task-specific knowledge in their problem spaces that they are reluctant to relinquish.  

Law of Limited Visibility  
Hypothesis: In the absence of concrete negative performance feedback or external pres-
sures, an individual will gradually come to view the entire goal space in terms of the peak 
that he or she has reached or is presently climbing. The phenomenon will be particularly 
pronounced in a goal space where multiple peaks exist, but only one provides feedback. 

This hypothesis, which addresses the issue of loss of perspective, builds upon the same basic as-
sumption as the previous hypothesis, that the acquisition of expertise is intrinsically motivating. 
The underlying reasoning is as follows. As you acquire expertise in a rugged goal space, the 
process will naturally begin by choosing a peak to focus on (Level 2) then, ultimately, getting to 
the point where you don’t explicitly think about the goal at all but only the progress you are mak-
ing towards completing the task (Level 1). The presence of feedback that suggests you are not 
doing well, or external pressures to increase your exploration of the goal space, will motivate you 
to continue thinking about the goal space as a whole. In the absence of such pressures, however, 
you will naturally come to believe that your way of viewing the task is the “correct” way (a single 
peak perspective).  

The predicted impact of the availability of feedback for only one peak is easily explained. In low 
structure situations, feedback regarding what constitutes a “good” strategy improves performance 
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(Payne et al., 1993). As a consequence, expertise can develop more rapidly in such contexts. As 
we are motivated by the acquisition of expertise, it therefore makes sense that we would gravitate 
towards solution fitness peaks providing such feedback. 

There are a number of additional observed cognitive mechanisms that would tend to cement our 
loss of general perspective once the process is set in motion. The availability bias results in our 
being excessively influenced by examples that we can readily recall—which would all tend to 
arise from our activities relating to the individual peak (Reber, 2004). The false consensus effect 
(Ross, Greene, & House, 1977) means that we will tend to believe others see the world the way 
we do, meaning we will perceive that our peers view the task in the same single-peak terms that 
we do unless they explicitly inform us to the contrary. The confirmatory bias means that we tend 
to maximize the weight that we place upon incoming evidence that confirms our view of the task 
and ignore or minimize evidence to the contrary (Oswald & Grosjean, 2004). The representative-
ness bias (Teigen, 2004) means that we will tend to view information that partially supports our 
view as being completely supportive of our view. These may, of course, also be taken as support-
ing the built-in resistance to loss of expertise previously hypothesized. 

On the positive side, the Law of Limited Visibility offers the promise of task performance bene-
fits, at least in the short run. All the processes associated with knowledge compilation result in 
increasing speed combined with reduced cognitive demands. Thus, focusing on a single peak and 
acquiring expertise as rapidly as possible will promote task performance efficiency.  

The potential risks involved with the single peak stem from our entire notion of evolutionary fit-
ness. When entities become so specialized that they cease to adapt, they are extremely vulnerable 
to changes in the environment. An interesting example of this vulnerability involves two compa-
nies that, in the mid-1980s, were widely touted as being the future of business: Mrs. Fields’ Coo-
kies and Batterymarch Financial Management (Gill, 1995).  In both cases, the companies had 
achieved acclaim through their innovative informing systems. In the case of Mrs. Fields, they im-
plemented a centralized system that controlled cookie production, scheduling, record-keeping, 
and even facilitated hiring at all their store locations. Essentially, it eliminated the need for exper-
tise at the store manager level—which was good, since the average tenure of store managers was 
less than a year. Using this system, they achieved spectacular growth in sales and units without 
needing to franchise. Batterymarch managed investments and, in similar fashion, developed a 
fully automated portfolio system—based on the founder’s contrarian philosophy—and the first 
automated trading system, allowing the firm to eliminate costly human traders. By the early 
1980s, the Batterymarch had experienced a huge increase in assets managed, had established an 
extraordinary track record of beating the market averages, and had a managed-assets-per-
employee ratio on the order of ten times the industry average. 

In both cases, then, the companies had profited dramatically by employing technology in place of 
human expertise, in support of their respective founder’s particular view of the world (problem 
space). From an adaptive systems standpoint, however, this caused a problem. The types of indi-
viduals the systems replaced (experienced managers and franchise owners for Mrs. Fields; human 
traders for Batterymarch) were precisely the type of individuals whose role included environ-
mental sensing and who would typically be the first to identify fundamental changes taking place 
within the competitive environment. Thus, when the stock market transformed from its lackluster 
days of the 1970s and early 1980s into the bull market that commenced in 1982, Batterymarch 
continued to try to fine tune its portfolio using its original contrarian model instead of restructur-
ing its approach and seeking an alternative peak. In doing so, it achieved a track record that was 
as breathtakingly bad as its previous record was good. In the case of Mrs. Fields, changes in con-
sumer taste, the role played by malls, and a bi-coastal recession that hit its prime areas in the late 
1980s fundamentally changed the cookie business and their subsequent attempts to tune their ex-
isting models to the new environment proved ineffective. As a result, the company suffered huge 



 Gill 

 269 

losses and the Fields lost control of the business that they had founded. The cautionary lesson 
provided by the two stories is an important one: the efficiencies gained from exclusive focus on a 
single goal in a rugged goal space come only at the expense of adaptability. Should the environ-
ment change, the original problem space will be brittle. 

Law of Low Hanging Fruit  
Hypothesis: Within a rugged goal space, those problem space attributes that enhance or 
detract from goal fitness decomposably across nearly all fitness peaks will tend to ob-
scure equally important contributors to fitness that only act upon certain specific peaks. 

This hypothesis particularly relates to the challenges associated with acquiring expertise across a 
task domain that includes a rugged fitness landscape (i.e., multiple fitness peaks, Goal Level 3) 
for task performance, as opposed to domains with decomposable (Goal Level 2) fitness land-
scapes.  

Within rugged task domains, there are likely to be some attributes that influence fitness in a de-
composable manner, collectively referred to as low hanging fruit (Gill, 2008b, Gill & Sincich, 
2008). Viewed from a task case perspective, these are the attributes that are common to all task 
cases, as illustrated in Figure 3. From a theory-building perspective, these attributes are very at-
tractive. One of the principal criteria for judging the quality of a theory is its compactness. Prior 
to Copernicus, for example, it was perfectly feasible to predict the position of the planets in the 
sky—it simply required a very elaborate model based on the assumption that the earth was the 
center of the universe. The solar centered model, in contrast, was vastly simpler in its construc-
tion. Thus, reinforced by principles such as Occam’s razor, when attempting to construct a theory 
that applies to all task cases, we would prefer that relatively few task attributes actually determine 
fitness. Thus, we tend to accept state space values as making a contribution to goal fitness only 
on the basis of a large body of evidence, which may include both models and observations. When 
presented with a series of task cases, each having a set of attributes that appear to be significant 
contributors to goal fitness, the most attractive and generalizable theory would consist of the in-
tersection of those attributes. Any theory encompassing additional attributes is going to involve 
qualifications and contingencies that undermine the compactness and elegance of the theory. 

 
Figure 3: Low Hanging Fruit in Attribute Space 
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If, on the other hand, the goal is not to develop generalizable theory but rather to maximize task 
performance on a case-by-case basis, the opposite strategy may emerge. With each new case, ad-
ditional attributes that impact task fitness will be identified and, rather than casting them out, we 
would tend to incrementally add them to our existing schemata. Effectively, then, we end up with 
a problem space that involves the union of those attributes. It has been observed, for example, 
that practitioners often develop heuristic models in their personal problem space that are unneces-
sarily convoluted. In fact, regression analysis frequently outperforms expert judgment on well 
structured tasks, an observation referred to as the “process-performance paradox in expert judg-
ment” (Camerer & Johnson, 1991, p. 195). Moreover, the resulting scoring models often prove to 
be considerably more parsimonious than the approach employed by the original experts. Gladwell 
(2005, pp. 125-136) relates a story of how a researcher, through the study of numerous sample 
cases, developed a simple 3-factor decision tree for predicting whether or not a patient with chest 
pains was having a heart attack that was 95% accurate, compared with a 75-89%  accuracy range 
for experts who used substantially more information.  

Informing Between Dissimilar Problem Spaces 
The structural complexity model would predict that the process of informing novice clients—who 
have a very small task-specific problem space—will be very different from that of informing ex-
pert clients—who enter the process with a large existing problem space. In addition, the expert-
to-expert informing process is likely to be heavily impacted by the qualitative differences be-
tween the sender and client problems spaces. We now consider how these differences could im-
pact the informing process. 

Informing Novice Client Problem Spaces 
A thorough treatment of the process of informing novices would, quite obviously, involve revisit-
ing nearly the entire body literature generated by the field of education. Equally obvious, such a 
review is beyond the scope of the present paper. Our objective in this section, therefore, is the 
considerably more modest task of framing the novice client informing process in terms of struc-
tural complexity. 

What makes informing novices different from informing experts is our ability to assume little or 
no pre-existing task-specific knowledge in the problem space. (Although, as our previously cited 
example relating to learning the Newtonian laws of motion suggests, even this assumption may 
be somewhat suspect in real world settings). Thus, the conceptual challenge of informing the nov-
ice revolves around building up the problem space from scratch. 

There would seem to be three general approaches that could be employed to support development 
of the problem space: 

1. Top-down approach. In this approach, structure is built from higher levels (e.g., theory, 
models, control knowledge), works down through intermediate levels (e.g., structures, 
programs), and, finally, clients are presented with real-world schemata and operators. 
This approach roughly corresponds to the traditional teaching approach that begins with 
lecturing and ends with examinations. 
 

2. Bottom-up approach: In this approach, clients are presented with a set of rich task exam-
ples—consisting of realistic schemata and operators—and are guided through the process 
of inducing their own theory. This very closely corresponds to the constructivist model, 
currently very popular in education. 
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3. Vertical-Slice approach: In this approach, whose name is suggested by the task case 
knowledge presentation of Figure 2, complete problem spaces (all elements and levels) 
that permit the solution of a specific problem (task case) are provided in a predetermined 
sequence. These slices become successively more challenging, based upon the task cases 
being considered—a process sometimes referred to as scaffolding—thereby allowing the 
evolution of a more comprehensive problem space. Such a problem-based learning ap-
proach is fairly typical in the math and science domain. 

As previously noted, the rugged goal space concept that is central to the present paper is that mul-
tiple fitness peaks are virtually inevitable in problems involving a particular sender informing a 
particular client about a particular complex task. In such situations, it would therefore be very 
likely that different strategies would prove to be optimal for different clients. Thus, rather than 
advocating a single approach, we will consider, from an abstract standpoint, the likely strengths 
and weaknesses of each approach. These are summarized in Table 7. 

Table 7: Strengths and Weaknesses of Approaches to Novice Informing 

Strategy Strengths Weaknesses 
Top-Down Allows the sender to maintain a high level 

of control over the client’s problem space—
particularly with respect to keeping it from 
becoming too well established (and there-
fore hard to change) prior to providing all 
information. Feedback is generally avail-
able, through testing. 

Since substantial motivation may derive from 
successful task performance, clients may 
become demotivated over the long period it 
takes before they are ready to solve realistic 
problems. Senders are likely to have diffi-
culty establishing a high level problem space 
that is suitable for novice clients. 

Bottom-Up Allows the client to immediately begin de-
veloping realistic task schema and, shortly 
thereafter, begin task performance. The re-
quirement that the client induce his or her 
own abstract models over time reduces the 
likelihood that incorrect models that need to 
be changed will be frozen into the client 
problem space. Provides significant oppor-
tunities for reinforcement through peer-to-
peer informing. 

Extremely sensitive to the nature of the task 
examples presented. In task domains where a 
verifiably “correct” body of theory exists, 
there is no guarantee—or even likelihood—
that the correct theory will be induced by the 
client. Senders must generally have deep 
knowledge of all the task cases presented. 
Feedback is generally ambiguous, often in-
tentionally so to avoid driving the theory-
creation process. 

Vertical-
Slice 

Allows client to begin task performance 
very early in the informing process, provid-
ing a source of continuous motivation. The 
fact that information is continuously being 
transferred at all levels of structure may 
allow a wide range of client learning prefer-
ences to be accommodated. Feedback is 
generally available through exercises. 

Clients may begin to freeze knowledge based 
upon “toy” problems. May be difficult to 
construct independent slices in complex task 
domains. Lack of feedback in task domains 
where goal criteria tend to be fuzzy or dy-
namic may make constructing and learning 
from vertical slice problem spaces difficult. 

 

The client’s motivation for seeking informing is also likely to have a significant bearing on the 
most appropriate technique. As previously noted, three distinct motivational profiles are typically 
encountered with populations of students (Elliott & Harackiewicz, 1996): mastery motivation 
(e.g., “I want to learn the material for its own sake, or so I can do things in the future”), perform-
ance-approach motivation (e.g., “What do I need to do in order to get an A?”), and performance-
avoidance (e.g., “What do I need to do in order to get a passing grade?”). As a general rule, the 
two performance motivations may be less compatible with the ambiguous feedback provided by 
the bottom-up approach. 
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The nature of the sender’s problem space can have a huge impact on appropriate approaches. 
Even when limiting ourselves to considering the case where the sender is an expert, a clear dis-
tinction needs to be made with respect to the form of expertise in the sender’s problem space. Ar-
istotle characterized knowledge as coming in two forms—episteme (theory) and phronesis (prac-
tical wisdom) (Kessels & Korthagen, 1996). In the structural complexity model, episteme would 
exist mainly at the upper levels. This type of knowledge is well communicated symbolically and 
is of a type prized by scholars. It would also be most commonly seen in individuals who know a 
great deal about a task, but who do not perform the task very often (frequent performance leading 
to the accumulation of more lower-level knowledge). Thus, we refer to individuals for whom 
episteme dominates as academic-experts. Phronesis, on the other hand, manifests itself most 
prominently in the practitioner-expert, which is to say an individual whose expertise has been 
acquired as a consequence of frequent performance of the task.  

Where the sender is a practitioner-expert, the top-down approach will often be a poor fit. The 
problem here is that the problem-space of the sender is likely to be in precisely the wrong form 
for novice use. The knowledge engineering paradox states that the more expert we are at perform-
ing a given task, the more likely that we will have trouble explaining what it is that we are doing 
(e.g., Waterman, 1986). It is completely consistent with the path towards expertise described ear-
lier, namely that repeated task performance moves us towards increasingly opaque schemas 
(chunks) and operators (automatized sequences) and what limited higher level models and control 
knowledge remain serve mainly to deal with unusual, non-routine cases. To make matters worse, 
experts are singularly bad at predicting how long it will take novices to acquire expertise, a find-
ing consistent with the compiling of knowledge anticipated in the structural complexity model 
and referred to as the “curse of expertise” (Hinds, 1999). Completing the mismatch, where a rug-
ged goal space is present, practitioner-experts are also likely to be intimately familiar with a few 
fitness peaks while, quite often, being unfamiliar with, or even unaware of, others (i.e., the Law 
of Limited Visibility). While these issues have less impact on bottom-up or vertical-slice strate-
gies, the practitioner-expert sender is likely to require considerable re-education in order to be 
effective employing a top-down strategy. 

The academic-expert sender, on the other hand, is likely to have far less difficulty applying the 
top-down approach. Such experts will generally aim their personal learning efforts towards gain-
ing a broader perspective of the entire problem space than would typically be required for the 
practitioner expert. The potential danger inherent in the broader perspective would be a natural 
tendency to overemphasize those low hanging fruit that generalize well across the entire problem 
space, thereby implicitly conveying (perhaps unintentionally) that the knowledge schemata em-
bodied in these fruit represent the only critical elements needed for dealing with any task situa-
tion. On the other hand, the academic expert sender may find the depth and ad-hoc quality of 
knowledge required for bottom-up strategies to be somewhat intimidating, unlike practitioner-
expert senders.  

Informing Expert Client Problem Spaces 
Expert-to-expert informing is a very important process, being a critical element in the diffusion 
processes for most advanced knowledge—where word of mouth appears to be the dominant 
means of informing for all but the initial stages of most diffusion processes (Rogers, 2003). It is, 
however, an extremely difficult problem setting to address in abstract terms. Beginning with the 
situation where expert problem spaces are similarly structured (e.g., practitioner-expert informing 
practitioner-expert or academic-expert informing academic-expert), some general patterns—
perhaps better described as low hanging fruit—suggested by our task structure model include: 

• Informing will generally take place across levels where most expertise resides. Thus we 
would expect informing between practitioner-experts to be dominated by exchange of 
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schemata, whereas academic-expert informing is likely to take place at the model and 
task control knowledge level. 
 

• In complex goal environments, informing will generally be more effective in situations 
where similar goal peaks are selected. For example, practitioner-experts pursuing very 
different peaks within the same domain are likely to have evolved very different sche-
mata that inhibit communications. Academic-experts from different schools (e.g., scien-
tists whose model is evolution versus those who believe in intelligent design) face formi-
dable barriers to informing, since accepting premises from another school necessarily 
means abandoning existing beliefs (thereby violating the Law of Abandoned Expertise). 
 

• Some material differences between similar expert problem spaces must exist, otherwise 
even extensive communication will likely result in minimal informing (which we nar-
rowly define as communications leading to changes to the client’s problem space). 

Summarizing these patterns, informing between comparable experts is probably a matter of 
achieving balance. It will be most effective where the problem spaces involved are similar 
enough to ensure effective communications but different enough so that such communications 
lead to informing. Not surprisingly, this conclusion closely corresponds to what is generally con-
sidered to be interesting (Davis, 1971). 

Informing activities between academic-experts and academic-practitioners face formidable obsta-
cles in both directions, a number of which may be predicted from the model. As suggested by the 
distribution of dots in Figure 4, representing the hypothetical presence of knowledge elements in 
the problem space, pure practicing experts and pure academic experts are likely to look quite dif-
ferent. Practitioners are likely to exhibit considerable depth with respect to the task cases that they 
perform routinely, plus some special purpose higher level knowledge that is used to address cases 
that they encounter infrequently. Academic experts, on the other hand, are motivated to acquire 
broad theoretical knowledge of the task domain, while never practicing enough to acquire the 
low-level structures necessary for efficient performance. 

 

 
Figure 4: Illustrative Patterns of Practitioner and Academic Knowledge Distributions 
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The worst barriers to communication between these spaces seem to present themselves where 
both client and sender, through the process of accumulating expertise, have come to view a rug-
ged goal space (Level 3) as decomposable (Level 2). This would mean, for the practitioner-
expert, concentrating on a single goal peak to the exclusion of all others. For the academic-expert, 
it would involve developing an extensive theory space that generalizes to a broad range of task 
cases through eliminating relationships not observed in all (or, at least, most) cases—i.e., domi-
nated by low hanging fruit. When the practitioner-expert attempts to inform the academic-expert 
in this context, barriers from the academic expert client’s perspective include:  

• While some of the practitioner-expert’s key contributors to fitness confirm what the aca-
demic-expert already knows, many will represent items that the academic-expert has al-
ready rejected as being spurious as a result of a rigorous analysis of the intersection of 
many task cases. 
 

• The practitioner-expert will gravitate towards informing through the use of highly spe-
cialized schemata, none of which seem particularly useful in achieving the academic ex-
pert’s goal of theory building. When asked to explain, the practitioner-expert will often 
be unable to do so (Waterman, 1986). 
 

• Accommodating the practitioner-expert’s perspective will often require the reformulation 
of theory or adding special cases that undermine the theory’s compactness and elegance. 

When informing moves from academic to practitioner, the barriers may prove to be even more 
formidable. From the practitioner-expert’s perspective, the academic-expert’s informing is all of 
the wrong type. For example: 

• It is full of low hanging fruit that are of little value to the practitioner-expert because they 
are obvious. 
 

• It is of the wrong form, since the practitioner-expert relies principally on schemata and 
operators for task performance and has little use for theory in reaching the particular peak 
that has been selected. 
 

• It is likely to have at least some elements that are not relevant, or may even be wrong, 
when applied to the expert’s particular task peak. The reason for this, as previously iden-
tified in the Law of Low Hanging Fruit, is that the appearance of significant values can 
be heavily influenced by the nature of the sample that is the basis of generalization. Thus, 
unless the practitioner-expert’s particular task peak happened to be well represented in 
the observed sample, there may prove to be values in the academic-expert’s model whose 
inclusion or anticipated direction of effect are entirely inconsistent with the practitioner’s 
own knowledge. 

These barriers are sufficiently great that we would expect effective academic-to-practitioner in-
forming to be relatively uncommon. In fact, the diffusion literature seems to provide considerable 
support for this prediction. Consider the following generalizations made by Rogers (2003): 

• The complexity of an innovation, as perceived by members of a social system, is nega-
tively related to its rate of adoption (p. 257). Advanced academic ideas are frequently 
complex, especially when viewed from the practitioner’s eyes, since they involve knowl-
edge presented in an unfamiliar form. 
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• The observability of an innovation, as perceived by members of a social system, is posi-
tively related to its rate of adoption (p. 258). Theory-based informing frequently lacks the 
concreteness that makes for effective informing (Heath & Heath, 2007). 
 

• The compatibility of an innovation, as perceived by members of a social system, is posi-
tively related to its rate of adoption (p. 249). Where the innovation is an idea, this com-
patibility will be with respect to both the idea’s form and substance. Where both aca-
demic and practitioner perceive that a single peak dominates the landscape, unless it hap-
pens to be the same peak, their ideas may be fundamentally incompatible.  

All of these factors will make the persuasion stage of adoption—during which “the individual 
forms a favorable or unfavorable attitude towards the innovation” (Rogers, 2003, p. 216)—
particularly critical. The persuasion stage, however, tends to be most effective when conducted 
through localite channels (Rogers, 2003, p. 207), meaning that other similar practitioners, rather 
than academics, are likely to be most effective in persuading a client practitioner to adopt an idea. 
This phenomenon also creates the likelihood of a time window after which the potential for aca-
demic-practitioner informing processes will be minimized. If the informing process starts in the 
very early stages of an idea, then cosmopolite channels—that is, channels where the sender and 
client can be quite different in terms of social network and knowledge—may be reasonably effec-
tive (Rogers, 2003, p. 207). If the diffusion of an idea is delayed (as will often be the case for 
academic ideas given the demands of rigorous reviews and characteristically long publication 
cycles) then the opportunity for efficient cosmopolite informing may well have passed. 

The chances for academic-practitioner informing in the presence of a rugged goal space are likely 
to improve significantly where both parties accept the inevitability of multiple peaks. From the 
practitioner perspective, the range of the academic-expert’s knowledge of the overall goal space 
provides the opportunity to consider alternative peaks that might prove to be more attractive than 
the peaks already well-understood. Such motivation will be particularly strong in where the prac-
titioner-expert client has a strong mastery motivation. While such clients are probably the excep-
tion rather than the rule in a general population of practitioners, they are likely to exist—going 
under a variety of names such as strangers, innovators (Rogers, 2003, p. 42), and mavens (Glad-
well, 2000). If these individuals within the practitioner community can be identified and in-
formed, they can play an important role in subsequent diffusion. 

The key to forming an informing relationship in which an innovator-expert becomes the client of 
an academic-expert is establishing motivation. One such motivation may be the fact that practi-
tioner expertise often becomes unnecessarily specialized during movement towards compiled 
schemata based reasoning. As previously noted (e.g., Camerer & Johnson, 1991, p. 195; Glad-
well, 2005, p. 125-136), expert performance can often improve through a systematic analysis of 
task cases aimed at making the expert’s mental model more parsimonious. Similar improvements 
over expert accuracy are also frequently reported in expert systems performance (e.g., Gill, 1996). 
Practitioner-experts have room for improvement just like the rest of us—even in tasks that they 
routinely perform. The challenge is in identifying what knowledge will be most valuable to the 
expert and, of course, achieving effective informing. 

When practitioner-experts communicate with academic-experts, the same general principles ap-
ply. The academic-expert client who perceives that the problem space has a rugged goal space is 
unlikely to have a hard and fast model that would be disrupted by the practitioner-expert’s per-
ceptions of the task. Indeed, the practitioner-expert’s insights could well lead to insights on sche-
mata that might prove applicable to other peaks, recalling that accumulating knowledge of task 
cases from a rugged goal space tends to expand, rather than reduce, the attributes considered in 
the goal fitness operator. 
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Perhaps the best approach to avoiding academic-practitioner communications challenges is to 
nurture the development of a hybrid expert, the academic-practitioner-expert (the academic who 
practices on the side or who had a long history of practice prior to acquiring academic training) or 
the practitioner-academic-expert (the practitioner who has completed most or all the training se-
quence that also produces academic researchers). In some fields, such individuals are widely dis-
tributed. In the sciences, for example, non-academic readership of research journals is common: 

…there are many scientists who read but never write, in particular in non-university set-
tings such as industry, government, and national laboratories. This is especially true in 
the medical field. Virtually every physician—even those not involved in research or 
teaching –must read medical journals to keep up with advances in patient care. In the life 
and physical sciences about 70% of all readings are done by nonacademicians, who write 
considerably less frequently than academic scientists. (Tenopir & King, 2001) 

Similarly, a terminal degree in the sciences—as well as some social sciences, most notably psy-
chology and economics—can often prove advantageous when looking for professional, industry, 
or government positions. In many professional fields—including medicine, law, engineering, and 
education—the same can be said. 

The one major exception to this pattern of nurturing hybrid experts is business where, with the 
exception of finance (Pfeffer, 2007, p. 1335), there is little or no evidence that academic research 
credentials are an effective path to advancement in practice in the U.S.—in Germany, on the other 
hand, such credentials are more highly prized (Mintzberg, 2004) —or that considerable practical 
experience will facilitate entry into the research community. Thus, we would expect the aca-
demic-practitioner gap to be particularly pronounced in the business domain. 

Conclusions 
Although the structural complexity model proposed here is applicable to virtually any informing 
activity between a human sender and a human client, the present paper has chosen to focus par-
ticularly on complex informing situations. There are two reasons for this. First, such informing is 
particularly prevalent in academic settings. Since the author is employed in such a setting—as is 
likely to be the case for most readers—it is an area of personal relevance. Second, there is proba-
bly no other domain where the transformation of client knowledge structures, both in competition 
with existing knowledge structures and where none previously existed, plays such an active role. 

From our analysis of the structural complexity in the problem space, there are a number of useful 
general conclusions we can draw about the nature of problem spaces and informing: 

1. One of key factors impacting informing is the ruggedness of the goal space presented by 
the task domain and internally represented by both sender and client. Rugged goal spaces 
tend to promote problem spaces where task case knowledge dominates core knowledge; 
decomposable goal spaces, in contrast, are accompanied by proportionately larger bodies 
of core knowledge that tends to be highly generalizable. 
 

2. Academic-experts and practitioner-experts tend to have knowledge distributed in very 
different ways within their respective problem spaces. Academic-experts favor episteme, 
or conceptual knowledge, that tends to be generalizable and relatively easy to communi-
cate symbolically. Practitioner-experts tend to favor phronesis, or practical wisdom, that 
is often situation specific and difficult to articulate. 
 

3. There are a variety of generic strategies that may be used in informing. The top down in-
forming approach, relying heavily on communicating conceptual knowledge, is a natural 
fit with academic-experts, but tends to be ill-suited to task domains with a rugged goal 
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space. The bottom up approach focuses on inducing concepts from very specific exam-
ples; it tends to be a good fit with practitioner-expert knowledge but presents significant 
communications barriers based upon the compiled nature of the knowledge to be con-
veyed, particularly where novice clients are involved. The vertical slice approach in-
volves studying individual task cases at all knowledge levels; it can be well applied by ei-
ther academic-experts or practitioner-experts but may not lead to consistent theory when 
applied to an overall task with a rugged goal space. 
 

4. In the rugged goal space, the barriers to informing between experts-in-practice and ex-
perts-in-theory are formidable; if such informing is to take place at all, then meeting the 
prerequisites of effective informing will generally have to take precedence over the actual 
substance of the information being transmitted or exchanged. 
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